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Abstract The Joint Effort for Data assimilation Integration (JEDI) is an international collaboration aimed at
developing an open software ecosystem for model agnostic data assimilation. This paper considers
implementation of the model‐agnostic family of the local volume solvers in the JEDI framework. The
implemented solvers include the Local Ensemble Transform Kalman Filter (LETKF), the Gain form of the
Ensemble Transform Kalman Filter (GETKF), and the optimal interpolation variant of the LETKF (LETKF‐
OI). This paper documents the implementation strategy for the family of the local volume solvers within the
JEDI framework. We also document an expansive set of localization approaches that includes generic distance‐
based localization, localization based on modulated ensemble products, and localizations specific to ocean
(based on the Rossby radius of deformation), and land (based on the terrain difference between observation and
model grid point). Finally, we apply the developed solvers in a limited set of experiments, including single‐
observation experiments in atmosphere and ocean, and cycling experiments for the atmosphere, ocean, land, and
aerosol assimilation. We also illustrate how JEDI Ensemble Kalman Filter solvers can be used in a strongly
coupled framework using the interface solver approximation, which provides increments to the ocean based on
observations from the ocean and atmosphere.

Plain Language Summary The Joint Effort for Data assimilation Integration (JEDI) is an
international collaboration aimed at reducing the time it takes to transition research on initialization of the Earth
system models to operation. The JEDI framework is designed to be agnostic of the specific numerical model
and, hence, can facilitate collaboration between research institutions and operational centers. This paper
documents implementation of the Ensemble Kalman filtering framework within JEDI. The implementation
strategy supports a variety of algorithmic approaches to the Ensemble Kalman Filtering and is appropriate for
multiple Earth system applications. Specifically, we demonstrate applications for atmosphere, atmospheric
composition, ocean, and land data assimilation.

1. Introduction
Data assimilation for multiple Earth system components simultaneously (coupled data assimilation [DA]) is an
emerging field, where observations of each Earth system component (such as atmosphere, ocean, ice, land, and
aerosols) are combined with a coupled simulation model to produce a statistically consistent estimate of the
complete Earth system (Penny et al., 2017). Recent examples of the coupled DA applications build on a rich
history of DA in each sub‐component of the system. For example, the National Oceanic and Atmospheric
Administration (NOAA) (Saha et al., 2006, 2010), European Center for Medium‐Range Weather Forecasts
(Browne et al., 2019; Laloyaux et al., 2015), and the U.S. Naval Research Laboratory (Barton et al., 2020)
operational Earth system forecast models and reanalyzes are composed from legacy DA systems (solvers) for the
atmosphere, ocean, and ice. These legacy DA solvers are specific to each Earth‐system component and present
formidable technical barriers for developing strongly coupled DA systems that treat all Earth system components
as a joint statistical estimation problem in which observations of one component can correct the state estimate in
the coupled components.
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The Joint Effort for Data assimilation Integration (JEDI) is an international collaboration aimed at developing an
open software ecosystem for model agnostic DA. Earlier efforts that developed model‐agnostic DA infrastructure
such as DA Research Testbed (DART; J. Anderson et al., 2009) and Parallel Data Assimilation Framework
(PDAF; Nerger & Hiller, 2013) focused on acceleration of research in DA. In contrast, JEDI is developed by a
consortium of operational and research weather forecast centers led by the Joint Center for Satellite DA, with the
goal of accelerating transition of research results to operations. The JEDI framework achieves this goal by
separating the concerns of the developers into generic blocks (see Figure 1) centered on abstract modeling of the
DA problem, observational storage, covariance modeling, observation operator, and interfaces to forecast models
(grouped inside of the gray box). These basic building blocks in Figure 1 can be reused and specialized by
multiple models (orange boxes in Figure 1). Some of these models include atmospheric models like the Finite‐
Volume Cube‐Sphere atmosphere general circulation model—FV3 (Harris et al., 2021), and the Model for
Prediction Across Scales—MPAS (Skamarock et al., 2012); ocean models like the Modular OceanModel version
6—MOM6 (Adcroft et al., 2019) and the Regional Ocean Model—ROMS (Haidvogel et al., 2000); sea ice
models like the Los Alamos sea ice model—CICE (Hunke & Lipscomb, 2015); land surface models like the Noah
land surface model with Multi‐Parameterization options—Noah‐MP (Niu et al., 2011), and atmospheric
composition models like the FV3‐based Global Ensemble Forecast System—Aerosols (GEFS‐Aerosols; L.
Zhang et al., 2022). Consequently, the generic DA algorithms developed using the JEDI framework can be
applied to many of the model implementations currently under development within the JEDI consortium. Having
this ability to use the same codebase, data structures, and algorithms for all components of the Earth systemmodel
will greatly simplify the transition to strongly coupled DA and testing of the individual components.

This paper focuses on the implementation of local volume solvers within the JEDI framework. By local volume
solvers, we mean the large family of algorithms that updates the model forecast at each grid point (e.g., the green
square in Figure 2) using a selection of observations in the geographic neighborhood of this grid point (e.g., the
orange dots and orange circle in Figure 2). Such updates can be performed independently of each other and can
scale well on modern computer architectures. The family of local volume solvers includes the Optimal Inter-
polation (OI) (Gandin, 1963), the Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007), the
Gain form of the Ensemble TransformKalman Filter (GETKF) (Bishop et al., 2017; Lei et al., 2018), and LETKF‐
OI/GETKF‐OI (Frolov et al., 2022) algorithms. Local volume updates are in contrast to global updates that are
achieved by inverting global covariance matrices through a gradient descent algorithm employed by variational
solvers (Daley, 1991).
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Figure 1. Separation of concerns in Joint Effort for Data assimilation Integration (JEDI). Image adopted from JEDI academy
slides (http://academy.jcsda.org/2021‐10/slides/2021‐06‐21‐WhyOOPSJEDI.pptx). Model implementation acronyms
correspond to different model implementations and are defined in the main text of the paper. Other acronyms include: OOPS,
Object Oriented Prediction System; SABER, System Agnostic Background Error Representation; UFO, Unified Forward
Operator; VADER, Variable Derivation Repository; and IODA, Interface for Observational Data Access.
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The objective of this paper is to present the implementation strategy for the family of the local volume solvers
within the JEDI framework. Specifically, we focus on providing a unified framework that allowed us to
implement LETKF and GETKF filters within the JEDI abstract (model‐agnostic) layer. We discuss how
abstraction of the observation and model containers presents a unique challenge to develop implementations that
provide effective load and memory balancing across a variety of abstract JEDI applications such as local volume
solvers, variational solvers, forecast, and observational applications. We also note that a skillful application of the
DA in multiple Earth System applications (such as atmosphere, ocean, land, and atmospheric composition) re-
quires diverse ensemble localization strategies. To our knowledge the full suite of localization strategies
considered in this paper is not yet implemented in other general‐purpose Ensemble Kalman Filter (EnKF)
packages like DART (J. Anderson et al., 2009) and PDAF (Nerger & Hiller, 2013). Finally, we demonstrate early
application of the developed solvers in the context of single observation and cycling experiments in atmosphere,
ocean, land, and atmospheric composition.

In writing this paper, we faced a set of unique challenges. The JEDI ecosystem is a set of rapidly evolving,
interconnected community packages hosted using the GitHub platform (https://github.com/JCSDA). During the
period that this paper was developed, new features were added to the repository stack on a daily basis. At the time
of the writing, all operational centers involved in the JEDI development had plans to implement some aspects of
the JEDI software in operations within the next 2–5 years. Specifically, at NOAA, the next version of the Global
Forecast System (GFS) will transition to JEDI‐based initialization for the ocean, ice, aerosols, and land com-
ponents. During the next 2–5 years, the JEDI software will be configured to be used with the full suite of Earth
system observations and modeling components. JEDI will also be hardened and optimized for high‐throughput
and reliability required in the operational environment. At the same time, we have observed that the number
of users of the JEDI system (including work described in this paper) is rapidly growing and so is the demand for a
coherent overview of the development strategy for the local volume solvers presented in this paper.

In timing of this publication, we attempted to balance the rapidly evolving nature of the system with the
completeness of the system. Specifically, this publication describes a sufficient set of features needed to conduct
science and pre‐operational trials in a diverse set of Earth system applications such as atmosphere, ocean, ice,
land, and atmospheric composition. The system we describe has sufficient throughput for most non‐operational

Figure 2. Local volume solver domain decomposition. Blue grid: grid points stored on the current (this) processing element
(PE). Black grid: grid points on the neighboring PE. Green square indicates the updated, analysis point x(i). Dots indicate
observations: (orange) observations used in the analysis; (blue) observations that are needed to update all points on this PE;
(gray) other observations that are not needed to update grid points on this PE. Circles indicate: (orange) the area used to
collect local observations for the current local analysis, (blue) halo region that contains all possible observation locations
needed to update grid points on this PE, (gray) observations halo region that contains all possible observation locations
needed to update grid points on neighboring PE.
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applications with the exception of the most demanding cases in global atmospheric DA. In acknowledgment that
the computational performance of the system will evolve rapidly within the next few years, we avoided
computational and scalability studies in this paper.

2. Mathematical Notation for the Local Volume Solver
2.1. Ensemble Kalman Filter

A generic implementation of an EnKF consists of the time update and the measurement update steps (Even-
sen, 2003). In the time update step, ensemble initial conditions are propagated forward in time and the mismatches
between actual observations and the ensemble observation equivalents are computed, resulting in a prior estimate
(the forecast) of the state and observations:

⎧⎪⎪⎨

⎪⎪⎩

(a) : xf (t+1)
j = M(xa(t)

j ,η(t+1)j )

(b) : yf (t+1)
j = H(xf (t+1)

j )

(1)

where: xf (t)
j and xa(t)

j are the forecast and analysis states for member ( j) valid for timestep (t), M and H are the
forecast and the observation operators; η← N(0, Q) is the model noise term generated from the zero‐mean normal
distribution N(0, Q) with the model error covariance matrix Q; and yf (t)

j are the observation equivalents of the

ensemble member xf (t)
j . We note that we will use index ( j) exclusively in this paper to indicate ensemble members

as defined in Equation 1.

Outside of the forecast step in Equation 1 the time indexing (t) is the same for all of the terms in equations and,
hence, it will be dropped for clarity through the rest of the paper.

From the prior forecast of observation equivalents yf
j an innovation vector is computed as:

⎧⎪⎪⎨

⎪⎪⎩

yf =
1

Nens
∑

Nens

j=1
yf
j

yinnov = yobserv − yf

(2)

where yf
j are the observation equivalents for the forecast of the jth ensemble member xf

j ; and yf , and yinnov are the
average of ensemble observation equivalents, and the innovations. Nens is the ensemble size. It is common to
assume that noisy observations of nature yobserv are related to the true nature state ytrue using yobserv = ytrue + ξ
through observation noise term ξ← N(0, R) drawn from a normal distribution with the zero mean and observation
error covariance matrix R.

From Equations 1 and 2, we can also compose matrices of ensemble perturbations in the state and observational
space.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

xf =
1

Nens
∑

Nens

j=1
xf
j

Zf = Xf − xf
j

(3)

Yf = [yf
1,…,yNens

f ] − yf
j (4)

where Xf, Zf, and Yf are the matrices holding the ensemble of forecasts, ensemble of forecast perturbations, and
ensemble of forecast perturbations in the observational space. The average of the forecast ensemble members in
the state space and observational space are defined using the overbar notation as xf and yf respectively.
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In the measurement update step of the EnKF, a posterior estimate of the ensemble members is computed through a
linear combination of forecast (prior) ensemble perturbations Zf:

⎧⎨

⎩

(a) : xa = xf + Zf w{Y f ,R,yinnov}

(b) : Xa = xa + Zf W{Y f ,R}

(5)

where w{Y f ,R,yinnov} and W{Y f ,R} are the ensemble transformation vector and matrix for the mean state and the

ensemble perturbations, respectively. Specific forms of the transformation matrices depend on the update al-
gorithm and are discussed in Section 3 below. The subscripts {Yf, R, yinnov} and {Yf, R} indicate that the weights
are functions of the ensemble of forecast perturbations in the observational space, observation errors, and
innovations.

The original implementation of the EnKF filters in JEDI is based on the square‐root form of the EnKF, where the
ensemble of analyzed states Xa is obtained using a single transformation matrix (W{Y f ,R}) and a single mean
innovation yinnov. This is in contrast to alternative formulations of the EnKF that use perturbed observations
(Evensen, 2004) or use Kalman gain matrices that differ for each ensemble member (Buehner, 2020). Such
implementations are possible in the JEDI local volume solver framework; however, they were not implemented at
the time this paper was written.

2.2. Local Volume Solver Approximation

In the context of the local volume solver, the measurement update step is performed for each local collection of
model states x(i) as follows. First a local innovation vector is computed by applying the selection operator Sobserv

(i)

(orange circle in Figure 2) that selects innovations that fall within the localization influence of the grid point (i):

yinnov(i) = Sobserv
(i) yinnov (6)

Implementation of the selection operator Sobserv
(i) is further discussed in Section 5.1.

Then, if R‐localization is used (Hunt et al., 2007), the observation error covariance R is inflated as a function of
the distance between the location of the update point loc(i) and the observation locations loc(y):

Rlocal = (Ψ‖loc(i)− loc( y)‖Sobserv
(i) )R(Ψ‖loc(i)− loc( y)‖Sobserv

(i) )
T

(7)

where Ψ‖loc(i)− loc(y)‖ is the localization value computed as a function of the distance ‖loc(i) − loc(y)‖ between
observation location loc(y) and analysis location loc(i). We discuss different forms of the localization function in
Section 5.1. Note that the R‐localization in Hunt et al. (2007) only applies to diagonal matrix R in Equation 7. An
alternative to the R‐localization in Equation 7 is Z‐localization (Kotsuki & Bishop, 2022), which attenuates
columns of the Y matrix and can be used in presence of the non‐diagonal R matrix. Because Z localization is not
yet implemented in JEDI, we will use observation localization and R‐localization interchangeably referring to
Equation 7 above.

Lastly, the local update is calculated using local versions of the innovations yinnov
(i) and the inflated observational

errors R(i):

⎧⎪⎨

⎪⎩

xa
(i) = xf

(i) + Zf
(i)w{Y f

(i) ,R(i) ,y
innov
(i) }

= xf
(i) + xinc(i)

Xa
(i) = xa

(i) + Zf
(i)W{Y f

(i) ,R(i)}
= xa

(i) + Xinc
(i)

(8)

where x(i) = Sstate
(i) x are the variables local to the grid point (i) selected using model‐state selection operator Sstate

(i) .
Examples of model‐state selection operator Sstate

(i) include: all model variables associated with a single vertical
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column (based on the horizontal distance, i.e., the 2D iterator in JEDI notation); or all model variables associated
with a single 3D grid point (based on horizontal and vertical distance, i.e., the 3D iterator in JEDI notation). In
principle, one may choose to select local points in more complex ways, for example, only temperature variables
located within the oceanic mixed layer.

3. Generic Solvers
At the time of writing, there were two basic solvers implemented in JEDI: the LETKF that uses observation space
localization (R‐localization) and the GETKF that uses a combination of the model space localization (B‐locali-
zation) in the vertical direction and observation space localization (R‐localization) in the horizontal. LETKF‐OI
solver introduced in Frolov et al. (2022) discussed in Section 3.3 is a special case of the LETKF solver with
artificially created ensemble perturbations.

3.1. LETKF

The LETKF filter (Hunt et al., 2007) can be written (and is implemented in JEDI) as a two‐step operation. First,
the local update weights w

{Y f
(i) ,Rlocal,yinnov(i) }

and W
{Y f

(i) ,Rlocal}
are computed and, second, the update weights are applied

to rotate, scale, and translate the local prior perturbations Zf
(i). The weight computation requires an inverse of the

Nens * Nens matrix. This is performed using eigen solver as follows:

AvecAvalAT
vec⟵

eigen
A = (Yf

(i))
T
R− 1
(i) Yf

(i) +
(Nens − 1)

ρ
I (9)

where Avec and Aval are the eigen vectors and eigen values, I is the identity matrix, and ρ is the forgetting
(inflation) factor (which will be discussed in Section 4.1). We provide two options for this computation: one using
a generic C++ Eigen library (Eigen, 2023), and one using direct calls to the LAPACK library (E. Anderson
et al., 1999). After the eigen decomposition is performed, update weights are computed as follows:

WLETKF =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nens − 1

√
Avec(Aval)

− 1/2AT
vec

wLETKF = Avec(Aval)
− 1AT

vec(YT
(i)R

− 1
(i) yinnov(k+1)

(i) )
(10)

The update weights are then applied to the ensemble perturbations and the ensemble mean, giving the ensemble
mean increment xinc(i) and the ensemble perturbations Xinc

(i) :

xinc(i) = Zf
(i)wLETKF

Xinc
(i) = Zf

(i)WLETKF

(11)

The full posterior ensembles mean and posterior ensemble members can be computed using Equation 8.

3.2. GETKF

The JEDI implementation of GETKF follows Lei et al. (2018), with some minor changes as described below. The
GETKF solver uses the symmetric square‐root Lvert (consisting of the Neig columns ljvert) of the vertical locali-
zation matrix Cvert.

Cvert = LvertLT
vert (12)

where jvert are the indices of the eigen vectors of the vertical localization function. Vectors ljvert can either be
conditioned on the background state or read from an external file.

The localization operator Lvert is used to compute the modulated ensemble Zmod, by applying the Schur product ∘
between each column ljvert in Lvert, and each column zfj in Zf:
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Zmod = Lvert▵Zf = [l1∘zf1…Nens ,…,lNeig∘zNens
f ] (13)

The complete modulated ensemble in Equation 13 is never computed. We either compute Neig modulations of a

single original ensemble member [l1∘zfj ,…,lNeig∘z
f
j ] during the observer step, or we compute all modulated

ensemble members corresponding to a local geometry iterator Zmod
(i) during the measurement‐update step.

The GETKF computes two ensembles of forecast perturbations in the observational space. First, identical to
Equation 4, we compute perturbations Yf in the observational space for the original ensemble Xf.

Second, we compute perturbation matrix for Nens * Neig members of the modulated ensemble Zmod:

Ymod = [H(zmod
1 + xf ),…,H(zmod

Nens∗Neig + xf )] − yf (14)

We compute update weights using Equations 8–10 in Lei et al. (2018) as follows. First the eigen decomposition is
computed using modulated perturbation matrix Ymod:

AGETKF
vec AGETKF

val (AGETKF
vec )

T⟵
eigen

AGETKF =
1

Nens − 1
(Ymod

(i) )
T
R− 1
(i) Ymod

(i) (15)

Then update weights are computed as:

WGETKF = −
1

Nens − 1
AGETKF

vec [(I − (AGETKF
val +

1
ρ
I)
− 1/2

) (AGETKF
val )

− 1
] (AGETKF

vec )
T
(Ymod

local(i))
T
R− 1/2Ylocal(i)

wGETKF =
1

Nens − 1
AGETKF

vec (AGETKF
val +

1
ρ

I)
− 1

(AGETKF
vec )

T
((Ymod

local(i))
T
R− 1
local(i)y

innov(k+1)
local(i) )

(16)

The weights are applied to compute analysis perturbations and increments as:

xinc(i) = Zmod
(i) wGETKF

Xinc
(i) = Zf

(i) + Zmod
(i) WGETKF

(17)

3.3. LETKF‐OI

Frolov et al. (2022) introduced a deterministic form of the LETKF algorithm that uses R‐localization to define a
parametric error covariance model for univariate variables. In JEDI, this can be implemented by providing the
LETKF with two pseudo ensemble members that are generated from a deterministic forecast step xf, and the
standard deviation of the background error σf as following:

xj = xf ±
σf
̅̅̅
2

√ (18)

This results in an ensemble with mean of xf, and standard deviation of σf.

3.4. Coupled Solvers

To support strongly coupled DA, the JEDI framework will need to implement abstract containers for coupled
model states, increments, and operators. At the time of this writing these capabilities were in the early devel-
opment stages and were not yet integrated in the framework of the local volume solver. In this paper, we provide
an illustration (or a proof‐of‐concept) for a strongly coupled DA using the interface solver approximation (Frolov
et al., 2016; Sluka et al., 2016). The interface solver uses independent solvers for each component of the Earth
system model. However, each of the independent solvers has access to the complete set of Earth system
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observations (or at least to the relevant subset of Earth system observations). In other words, the interface solver is
coupled in the observational space.

To illustrate the concept of the interface solver, we consider in Figure 3 an example of assimilation into an at-
mosphere, ocean, and near surface sea surface temperatures (SST) coupled model (similar to Akella et al., 2017;
Frolov et al., 2020). Ensembles of coupled states consist of atmospheric, oceanic, and skin SST variables. The
EnKF atmospheric observer processes atmosphere‐centric observations like radiosondes and radiances (including
surface sensitive radiances). The EnKF ocean observer processes ocean‐centric observations (such as Argo
profiles or retrievals of the ocean SST). We choose to delegate observations of surface sensitive channels to the
atmospheric observer, because the atmospheric states usually have all the required information for these ob-
servations already interpolated onto the atmospheric grid. We choose to delegate processing of the SST retrievals
to the ocean solver because SST retrievals are usually consistent with the ocean temperature observed by the
ocean drifters at 1 m depth. Ocean temperature at 1 m depth is more consistent with the gridded oceanic state than
with the skin temperature produced by the near‐surface SST model. We remind readers that Figure 3 is used for
the illustration of the coupled interface solver concept and how it could be implemented by users in their system.
We will provide some illustrations of this implementation in Section 7.1. However, we also suggest that other
users might choose to configure their interface solver differently (e.g., based on direct radiance assimilation that
would include the window channels that are primarily sensitive to the SST instead of relying on the SST retrievals
as illustrated in our example presented in Figure 3).

4. Available Inflation Methods
Several options for prior and posterior inflation were implemented in JEDI at the time of writing.

4.1. Prior Inflation

Prior inflation is supported in the form of a forgetting factor (Pham et al., 1998) denoted 1
ρ in Equations 9 and 16.

For ρ greater than one, the prior ensemble is inflated. For values of ρ between 0 and 1, the prior ensemble is
contracted. Values of ρ less or equal to zero are not admissible.

4.2. Posterior Inflation

Two options for posterior inflation are supported: relaxation to the prior perturbations (RTPP; F. Zhang
et al., 2004); and relaxation to the prior spread (RTPS; Whitaker & Hamill, 2012). Both options are formulated as
operation on the zero‐mean ensembles of prior Zf

(i) and posterior perturbations Za
(i) defined at a grid point (i).

Figure 3. Example of interface solver implementation in Joint Effort for Data assimilation Integration framework. A pair of
Local Ensemble Transform Kalman Filter (LETKF) observers are run first obtaining ensemble observations of all
atmospheric and oceanic variables. In this illustration, the near surface SST forecast (NSST) from the diurnal layer model is
used as a first guess by the atmospheric observer for observations of the surface‐sensitive radiances. Ocean state is used by
the ocean observer to estimate the forecast of SST retrievals. Then a pair of LETKF solvers is executed, one producing
analysis on the atmospheric and the second on the oceanic grids. Each solver can use a combination of atmospheric and
oceanic observations. In this example, the atmospheric solver is tasked to produce the analysis of the NSST variable as it has
a more complete picture of atmospheric observations that can potentially influence the NSST estimate.
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RTPP is defined as:

Zinc′
(i) = (1 − αRTPP)Zinc

(i) + αRTPPZf
(i) (19)

where αRTPP ∈ (0,1] is the scalar inflation coefficient, and Zinc
(i) and Zinc

(i) are the analyzed ensemble perturbations at
grid point (i) before and after RTPP inflation.

RTPS is defined as a grid point operation:

Za′
(i) =

⎛

⎜
⎜
⎝αRTPS

(σf
(i) − σa

(i))

σa
(i)

+ 1

⎞

⎟
⎟
⎠Za

(i) (20)

where αRTPS ∈ (0,1] is the scalar inflation coefficient, σf
(i) and σa

(i) are the standard deviations (spread) of the prior

and posterior ensemble, and Zinc
(i) and Zinc

(i) are the analyzed ensemble perturbations at grid point (i) before and after
RTPS inflation.

5. Localization
5.1. Observation Space Localization for Earth System Components

Observation space localization Ψ(‖loc(i) − loc(y)‖, ψ) in Equation 7 inflates observations errors for local ob-
servations as a function of some distance between the location of the local volume loc(i), the location of the
observation loc(y), and the localization length scale ψ. It is customary to use the inverse of a correlation‐like
function, such as the Gaspari‐Cohn (Gaspari & Cohn, 1999), that is equal to 1 at the location of the local vol-
ume and decays to zero (infinite inflation) over some support radius ψ.

When localization in more than one dimension is required (e.g., horizontal and vertical), different localization
scales (e.g., ψhor and ψvert) in each dimension might be required. The total localization function can then be
composed as a function of multidimensional distance in one of the two ways.

One could add all normalized distances and then compute the localization function:

Ψ(‖loc(i) − loc( y)‖,ψhor,ψvert) = Ψ

⎛

⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
‖loc(i) − loc( y)‖2hor

ψ2
hor

+
‖loc(i) − loc( y)‖2vert

ψ2
vert

√ ⎞

⎟
⎠ (21)

Alternately, one could assume that the localization functions are separable and compose the total localization
function as a product of each individual localization:

Ψ(‖loc(i) − loc( y)‖,ψhor,ψvert) = Ψ(
‖loc(i) − loc( y)‖2hor

ψ2
hor

)Ψ(
‖loc(i) − loc( y)‖2vert

ψ2
vert

) (22)

The JEDI implementation uses the second option for two reasons. First, using separable localizations allows us to
keep track of distances in each dimension within the object that implements each of the localization blocks. And
second, each localization block can use a different correlation function; for example, horizontal localization could
use the Gaspari‐Cohn function while vertical localization could use the Gaussian function.

Specifying observation localization for each observation stream independently allows the JEDI local volume
solver to be flexible. For example, one could specify wider localization for radiosonde observations than for radar
reflectivity observations. In the case of the coupled DA example given earlier, one could specify different
localization scales for the SST, the ocean in‐situ temperature, and for the atmospheric wind observations.

Finally, the observation space localization (as implemented in JEDI) allows users to limit the number of ob-
servations used in a local volume analysis (by selecting those closest to the analysis grid point). Hamrud
et al. (2015) showed that selecting the closest observations allows for a significant speed up of the LETKF al-
gorithm with no loss in the fidelity of the LETKF update.
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5.1.1. Horizontal, Distance‐Based Localization

Several options for horizontal R‐localization are supported by JEDI, including
Box Car, Gaspari‐Cohn, and the second order auto regressive (SOAR)
function (see Figure 4). Horizontal observation localization also selects the
nearest N observations closest to the updated volume.

5.1.2. Vertical Localization

The Box Car, Gaspari‐Cohn, and SOAR functions are also supported for
vertical localization. The vertical distance between the local volume and the
observation is computed in the vertical coordinate of choice (e.g., pressure,
depth, or height). An optional log transformation to the vertical coordinate is
also supported before the vertical distance is computed.

To implement R‐localization in the vertical, the vertical location of each
observation must be included in the observation file, and the model interface
must then return a matching vertical location for each analysis grid point. For
some observation types and model grids this might not be possible. For
example, satellite radiances observe integrated vertical properties, which can
be difficult to relate to a specific observation height. Alternatively, many
ocean‐specific implementations of the Kalman filter analyze the entire ver-
tical column of grid points, again making it difficult to assign a specific height
to the analysis volume. In such cases, model space localization discussed in
Section 5.2 might be a more appropriate vertical localization strategy.

5.1.3. Component‐Specific Examples

5.1.3.1. Brasnett Localization for Land DA

To enable localization of land‐specific observations like snow, JEDI includes the Brasnett localization (Bras-
nett, 1999), which attenuates the localization as a function of horizontal distance and the vertical difference in the
orography of the observation location and the analyzed grid point:

LBrasnett = (1 + cxlx) exp[− (cxlx)] exp[− (
lz
cz
)

2

] (23)

where LBrasnett is the Brasnett correlation function, lx is the horizontal distance between the two points in meters, lz
is the vertical (terrain) difference between the two points in meters, cx is the horizontal length scale in m

− 1 (default
value recommended in Brasnett (1999) is 0.000018 m− 1, which is equivalent to a 120 km e‐folding scale), and cz
is the horizontal coefficient in meters (default is 800 m). Figure 4 in Brasnett (1999) provides a nice illustration of
how steep terrain in the Western United States affects correlation structures modeled by Equation 23.

5.1.3.2. Rossby‐Radius Based Localization for Ocean DA

Because water has a higher density than air, the first Rossby radius of deformation for baroclinic instabilities
varies latitudinally in the ocean from ∼300 km near the equator to 3 km in the Arctic ocean (Chelton et al., 1998).
This variability affects error correlation scales in eddy resolving models. To accommodate this variability, we
introduced a variant of the Gaspari‐Cohn function with the support radius varying as a function of the local
Rossby radius as following:

LRossby = min{max[max(L0 + mrLr,mg
̅̅̅̅̅̅
a(i)

√
),Lmin],Lmax} (24)

where LRossby is the support radius provided to the Gaspari‐Cohn function; Lmax and Lmin are the user‐specified
maximum and minimum support radii; L0 is the user‐specified base value of the localization radius; Lr is the
Rossby radius of first baroclinic deformation from Chelton et al. (1998); ̅̅̅̅̅̅a(i)

√ is the square root of the grid cell

Figure 4. Localization as a function of normalized distance and localization
type. For illustration purposes, distance was scaled by a factor of 8 before the
second order auto regressive (SOAR) function was calculated to achieve a
near zero value for normalized distance of 1 (e.g., the SOAR function value
is 0.003 for the distance of 8).
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area at the location of the analysis volume; and mr and mg are the user‐
specified multiples. Equation 24 provides a lot of flexibility to model local-
ization radius LRossby. The default values for Equation 24 are L0= 0, mr = 1.0
and mg = 1.0, Lmax = inf, and Lmin = 0.0.

5.2. Model Space Localization

The GETKF solver described in Section 3.2 supports model‐space localiza-
tion in the vertical direction, similar to the original description in Lei
et al. (2018). We expect that future implementations might also support model
space localization in the horizontal direction, similar to the MLGETKF solver
introduced by Wang et al. (2021).

Currently several options are supported for specifying the vertical localization
matrix. One option is for the model interface to return the vertical coordinate
of the model; then a correlation matrix can be computed based on the
localization scale specified in this vertical coordinate. Examples of the ver-
tical coordinates include model level numbers and log pressure. Another
option is for the GETKF solver to read the square root of the horizontally‐
varying vertical localization matrix from disk (one model increment file for
each column of the square root). These files can be generated in several ways.
For example, one can compute the correlation matrix from a random sample
drawn from the parametrized form of the vertical localization operator used in
the ensemble variational solver. Alternatively, a user can implement their own
vertical localization operator that can output the square root of the vertical
correlation as a collection of increment files.

6. Parallel Data Distribution
6.1. Model‐Space Data Distribution

Model implementations (lower left block in Figure 1) implement the Message
Passing Interface distribution of the model states in JEDI. These distributions
can vary depending on the model implementation.

6.2. Observation‐Space Distribution

Several options for parallel distribution of observations are available in JEDI at the time of this writing:

• Round robin distribution, which randomly distributes observations across all available processing elements
(PEs) to optimize the balance of observations across PEs.

• Inefficient distribution, which replicates all observations on each processor.
• Halo distribution, which stores overlapping sets of observations on each PE. This distribution assumes that

the model grid is distributed across PEs in tiles (blue and black grids in Figure 2). The overlapping obser-
vation sets are described by a user‐specified circle centered on the geometric center of the local model tile
(large blue circle centered on the blue tile in Figure 2 or blue triangle in Figure 5). The default halo radius
(halo size) is set large enough to encompass all observations on Earth, which reduces the Halo distribution to
the Inefficient distribution. Figure 5 shows the details of how Halo distribution is computed. In practice, the
Halo size is selected to be just large enough to contain observations that are necessary to update all grid points
on a PE.

The current implementation of the solver step of the local volume solvers (Equation 5) assumes that all obser-
vations that are required to make an analysis update at a particular model point are available on the PE owning this
model point, and no communications are needed. Thus, only Inefficient or Halo distributions can be used for the
solver step. Because the solver has to store the ensemble of observations, Inefficient distribution can run out of
memory available to each PE on the computational node for large ensembles and observations sizes. Using Halo
distribution is highly recommended for global observational counts above 1 million in the GETKF solver.

Figure 5. Halo distribution of observations. Shown are (blue grid) the grid
points stored on this processing element (PE). (Blue triangle) halo center
computed as a center of the grid points. (Blue circle) patch radius Rpatch that
encloses all the grid points on this PE; (Orange circle) halo size radius Rhalo

size that is added to the patch circle. In practice, Rhalo size is related to the
localization radius. (Green circle) the total halo circle that is computed as a
summation of Rpatch + Rhalo size. Observations can then be divided into patch
observations that exclusively belong to this PE based on the shortest distance
to the patch center (the blue dot). Halo observations (green dots) that are
within the green total halo radius. And observations that are not stored on
this PE because they are outside of the total halo radius (gray dots).
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In contrast to the solver step, the observation step of the local volume solvers (Equation 1) uses any of the
distributions listed above. For the observation step, the round robin distribution provides the best load balancing
between different PEs, and has the best time‐to‐completion because it uses non‐overlapping distributions of
observations. Inefficient distribution provides the longest time to completion, doesn't scale with the number of
PEs, and is impractically slow for observation counts on the order of 1 million. Halo distribution provides a
practical balance between the two options.

The current implementation of the local ensemble solver in JEDI also allows the use of different observation
distributions during the observer (Equation 1) and the solver (Equation 5) steps. This is accomplished by
executing the EnKF application in the observer‐only mode (e.g., using the most efficient round robin distribution
for the observer step), followed by the execution of the EnKF application in the solver‐only mode (e.g., using the
most efficient Halo distribution for the solver step). The redistribution of the observations between the two runs is
accomplished by writing and reading of the intermediate observer files. Future implementations of JEDI might
support this observation space redistribution in memory without the need to dump intermediate files to disk.

7. Case Studies
To illustrate usage of the developed local volume solvers in realistic applications, we provide several case studies
that involve assimilation of the atmospheric, oceanic, land, and atmospheric composition measurements. A
summary of the experimental configurations is provided in Table 1. These case studies include assimilation of
single observations that illustrate how information is spread from observation location to grid points. We also
present limited cycling experiments that compare forecasts from the local volume analysis against a combination
of other reference systems (e.g., variational or systems with no DA).

7.1. Single Observation Experiments

To demonstrate the impact of localization in the coupled ocean‐atmosphere system, we generated an 80‐member
ensemble using a coupled Unified Forecast System (UFS) model at 1° nominal resolution (UFS, 2023). For this
section we used synthetic observations that allowed us to co‐locate observation in areas of large ensemble spread
and to set the size of the observation error to be equal to the size of the ensemble spread.

Table 1
Summary of the Model and Data Assimilation Configurations Used in Section 7

Figure Experiment label Model Nens Solver Inflation

Localization

Horizontal Vertical

Figures 6
and 7

No loc. UFS p5 80 LETKF None N/A None

Figures 6
and 7

GETKF UFS p5 80 GETKF None N/A Model‐space

Figure 8 UFS p5 80 LETKF None N/A None

Figures 9
and 10

JEDI GFSv16 80 GETKF RTPS R‐loc (Gaspari‐Cohn) Model‐space

Figures 11
and 12

LETKF MOM6 30 LETKF RTPS R‐loc (Rossby) None

Figure 13 LETKF‐OI NOAH‐MP 3 LETKF None Brassnett

Figure 14 LETKF GEFS‐Aerosols 20 LETKF Multiplicative R‐loc (Gaspari‐Cohn) None

RTPS

RTPP

Figure 14 GETKF GEFS‐Aerosols 20 GETKF Multiplicative B‐loc (Gaspari‐Cohn) Model‐space

RTPS

RTPP
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Figures 6 and 7 illustrate the impact of model space localization on spreading of the innovation vertically in the
atmosphere from assimilation of a single surface pressure observation (Figure 6) and a lower‐troposphere tem-
perature observation (Figure 7).

In Figure 6, the surface pressure observation is localized by modulating the 3D pressure field, instead of pre-
scribing localization directly between surface pressure and the rest of the 3D state. Figure 6 shows that the surface
pressure is more correlated with the mid‐ and high‐tropospheric temperatures and layer pressures than with the
temperature and layer pressure in the boundary layer directly above the surface. This finding is intuitive as surface
pressure measures the integral of the vertical column and is sensitive to the location of the large‐scale weather
systems that tend to locally displace the tropopause, resulting in areas of high‐ and low‐pressure systems. In
contrast, Figure 7 shows that an observation of the near surface temperature has an immediate impact on the

Figure 6. Increment to the vertical column of atmospheric temperature (a) and layer pressure (b) from assimilation of single
surface pressure observation at 40.5°N, 160.5°E and innovation of 6 hPa. Background ensemble valid for 2015‐12‐05
18:00Z. Gain form of the Ensemble Transform Kalman Filter (GETKF) vertical localization was used with localization scale
of 30 levels and 10 eigen vectors capturing 96% of the variance.

Figure 7. Increment to the vertical column of atmospheric temperature (a) and layer pressure (b) from assimilation of single
temperature observation at 40.5°N, 160.5°E, 950 hPa, and innovation of 1 K. Background ensemble valid for 2015‐12‐05
18:00Z. Gain form of the Ensemble Transform Kalman Filter (GETKF) vertical localization was used with localization scale
of 30 levels and 10 eigen vectors capturing 96% of the variance.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003692

FROLOV ET AL. 13 of 21



temperatures in the atmospheric boundary layer and on the level pressure in
the boundary layer and aloft at about 500 hPa.

Applications in the strongly coupled framework—where observations in any
fluid can directly increment the initial conditions in the coupled fluid—are
still in the early proof‐of‐concept stage. For example, Figure 8 illustrates
the impact on the ocean temperature profile from assimilating a single sea
surface temperature (SST—blue line) and a single atmospheric surface
temperature (AST—red line) observation. No vertical localization is used for
either the within‐fluid (SST‐ocean) or the across‐fluid (AST‐ocean) assimi-
lation. Both SST and AST assimilation have a large impact on the ocean
temperatures in the top 100 m of the water column. Overall, both increments
warm and deepen the ocean mixed layer.

The increments presented in Figure 8 illustrate the cross‐fluid assimilation
capabilities of the JEDI local volume solver, but we caution readers from
over‐interpreting the scientific merit of these increments. For example,
unlike the SST increment which is confined to the top 100 m, the AST
increment has a strong negative increment between 300 and 400 m deep.
We speculate that this deep increment is likely due to spurious correlations
between the ocean and the atmosphere and should be attenuated with an
appropriate cross‐fluid localization. We also note that within the mixed

layer, the magnitude of the AST increment is larger than the SST increment. We attribute this to the poorly
calibrated ensemble spread in the coupled ensemble, where ocean temperatures are under spread compared to
the atmospheric temperatures.

7.2. Cycling Experiments

This section presents limited results that illustrate cycling of the local volume solvers in four distinct application
areas: atmosphere, ocean, land, and aerosol assimilation. When appropriate, we compare cycling results for the
local volume solvers against other systems (such as variational solvers, an alternative implementation of the same

algorithm, or runs without DA). Several results presented in this section were
obtained from early engineering studies focused on demonstrating the
feasibility of cycling with a family of JEDI solvers. We expect that, as these
systems mature, separate scientific evaluations will be published by the
respective research groups fully detailing scientific findings from their
cycling experiments.

7.2.1. Atmosphere

Figures 9 and 10 demonstrate that the JEDI implementation of the GETKF
solver compares favorably to the reference implementation of the GETKF
algorithm in the Gridpoint Statistical Interpolation (GSI; Lei et al., 2018)
software. GSI GETKF solver is currently used operationally by NOAA in
version 16 of the GFS and version 12 of the GEFS. Specifically, Figure 9
shows that the first guess root‐mean‐square error (RMSE) for the GSI and
JEDI runs are almost identical when compared against in situ measurements
of temperature. Figure 10 further illustrates that the ensemble‐mean tem-
perature increments produced by both systems are qualitatively similar. It is
likely that small differences between the increment from the GSI (top panel)
and JEDI (bottom panel) in Figure 10 are due to differences in the analysis
grids (Gaussian for the GSI and cube‐sphere for JEDI).

Both GSI and JEDI results in Figures 9 and 10 were produced with similar DA
configurations. However, the configuration we used in Figures 9 and 10 is
different from operations in a number of significant ways. First, we reduced
ensemble resolution from 1/4° (in operations) to 1° (both GSI and JEDI in our

Figure 8. Increment to the vertical column of ocean temperature from
assimilation of a single atmospheric temperature observation at 27.5°S,
154.5°W, 950 hPa (red) and sea surface temperature observation at the same
horizontal location (blue). Both with the innovation of 1 K. Background
ensemble valid for 2015‐12‐05 18:00Z. No vertical localization was used.

Figure 9. Root‐mean‐square error (RMSE) for the 6‐hr atmospheric forecast
computed for a complete set of in‐situ measurements. Statistics were
accumulated for a Gridpoint Statistical Interpolation (black line) and Joint
Effort for Data assimilation Integration (blue line) cycling system with Gain
form of the Ensemble Transform Kalman Filter solver from 2022‐01‐03 to
2022‐01‐11. This configuration used 80 ensemble members at 1°
atmospheric resolution, assimilating all atmospheric radiosonde
observations and radiances from the National Oceanic and Atmospheric
Administration 19 satellite, and used relaxation to the prior spread inflation
of 0.85.
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experiments). Second, we drastically reduced the observing network. In our experiments, both GSI and JEDI only
assimilate radiosonde temperature, humidity and wind observations; and AMSU‐A radiances from the NOAA 19
satellite. A large group of scientists are currently working on configuring the JEDI system to use the rest of the
observing system correctly; however, their effort is outside of the scope of this article. Finally, the GSI system in
our experiments was configured to use localization in the 3D pressure space (similar to Section 7.1) instead of
direct localization of the surface pressure (used by GSI in operations).

7.2.2. Ocean

In this section, we use the LETKF with 30 members and a small representative subset of marine observations and
compare its performance to the 3DVar DA scheme using the JCSDA's Sea‐Ice, Ocean and Coupled Assimilation
(SOCA) framework for the MOM6 Hurricane North Atlantic domain. This regional study uses the SOCA‐

Figure 10. Ensemble‐mean temperature increment valid for 2022‐01‐04 00:00Z for Gridpoint Statistical Interpolation (GSI)
(top panel) and Joint Effort for Data assimilation Integration (JEDI) (bottom panel) for model level 76 (∼500 hPa).
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SCIENCE code repository (JCSDA, 2023f) to cycle the experiments. The experiments are cycled every 24 hr. The
horizontal resolution of the model is 1/4°, and it has 75 vertical levels. The DA schemes assimilate absolute
dynamic topography (ADT) and SST only. The assimilated ADT observations include data from CRYOSAT‐2,
JASON‐3, Saral/ALTIKA, Sentinel‐3A, and Sentinel‐3B. The level 4 AVISO ADT from Copernicus Marine
Services is used to estimate forecast errors but is not assimilated. The SST observations are from the Visible
Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the Suomi National Polar‐Orbiting Partnership
(Suomi NPP) spacecraft. The LETKF here uses Rossby radius‐based localization scales, which were found to be
better (not shown) compared to the Gaspari‐Cohn method.

The results indicate that the LETKF is performing as expected, and even with minimal tuning it is able to
outperform the existing 3DVAR (Figure 11). Both DA schemes lead to better performance overall than the no DA
case, however, the 3DVAR does show degradations in certain areas near the western boundary currents that the
LETKF does not suffer from (Figure 12). This is particularly noticeable in the SST observation departure (O‐B)
RMSE along the Equatorial currents (Figures 12a and 12b) and in the ADT O‐B RMSE along the Gulf Stream
(Figures 12c and 12d). This is likely due to the fact that the LETKF is able to apply the velocity increments while
3DVAR currently does not, leading to overall better‐balanced state estimation by LETKF. These findings
demonstrate that the JEDI‐LETKF is both technically and scientifically capable of further development for
ensemble ocean DA.

7.2.3. Land

Figure 13 demonstrates the application of the LETKF‐OI to assimilate snow depth observations intoNOAA's land‐
surface model, Noah‐MP. Point‐based snow depth observations from NOAA's Global Historical Climatology
Network Daily (GHCN; Menne et al., 2012) are assimilated once daily into an offline (land‐only) version of the

Figure 11. Root‐mean‐square error for the 24‐hr forecast of (a) sea surface temperatures (SST) and (b) absolute dynamic
topography (ADT) observations. Colors indicate: (black) no data assimilation, (green) 3DVAR algorithm, and (red) Local
Ensemble Transform Kalman Filter (LETKF).
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Noah‐MP model, from 1 September 2019 to 1 May 2020. The model is run at 1° resolution, and forced with
archived output from NOAA's GDAS/GFS system. As expected, the LETKF‐OI effectively improves the fit
between the forecasts and observations, reducing themean daily O‐F standard deviation from 72.0 to 51.3mm, and
reducing the mean daily O‐F mean from − 14.1 to 0.2 mm. The snow depth LETKF‐OI is being prepared for
implementation in the NOAA operational system. This system is based closely on the OI‐based snow analyses in
use at other weather prediction centers (Brasnett, 1999; de Rosnay et al., 2012; Gichamo&Draper, 2022), and will
assimilate both station snow depth observations and remotely sensed snow cover observations.

7.2.4. Atmospheric Composition

A global aerosol DA system for the NOAA Global Ensemble Forecast System—Aerosols (GEFS‐Aerosols; L.
Zhang et al., 2022) was recently developed based on the three‐dimensional ensemble‐variational (3D‐EnVar)
framework in JEDI. In this system, the aerosol optical depth (AOD) that represents the total amount of aerosols in
a column was assimilated to constrain aerosol concentrations in the GEFS‐Aerosols initial conditions. Briefly, the

one‐member control aerosol analysis was obtained by the 3D‐EnVar solver in
JEDI that used the pure ensemble‐estimated background error covariance for
aerosols. The resolution of the model was C96L64 with 20 members in the
ensemble. The background ensemble was updated by the LETKF or GETKF
solver as described in this manuscript. Detailed system descriptions and
evaluations were documented in Huang et al. (2023). In this section, we
present the initial AOD assimilation application using the 3D‐EnVar solver in
JEDI in combination of the LETKF and GETKF solvers (hereafter referred to
as EnVar‐L and EnVar‐G, respectively). Two 6‐hourly cycled AOD assimi-
lation experiments that employed EnVar‐L and EnVar‐G, respectively, were
performed on 1–30 June 2016 to assimilate within GEFS‐Aerosols the VIIRS
550 nm AOD retrievals produced by the National Environmental Satellite,
Data, and Information Service at NOAA (Jackson et al., 2013). The AOD
assimilation impacts were investigated by comparing with another cycled
experiment without AOD assimilation (hereafter referred to as NODA) in the
same period. For further details on the experiment configuration, we refer
readers to the description of the retrospective experiment in Section 4 of
Huang et al. (2023).

Figure 12. Root‐mean‐square error for the difference between run with no data assimilation and 3DVAR (left column, panels
a and c) and Local Ensemble Transform Kalman Filter (LETKF) (right column, panels b and d). Top row shows differences
for sea surface temperatures (SST) (panels a and b) and the bottom row shows differences for absolute dynamic topography
(ADT) (panels c and d).

Figure 13. Root‐mean‐square error for the 6‐hr forecast of the snow depth
(GHCN network). Colors indicate: (black) no data assimilation, and (red)
LETKF‐OI assimilation of snow depth measurements. Line style indicates:
(solid) standard deviation of error (dashed) mean error.
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Figure 14 compares simulated AOD from the NODA 6‐hr forecast, the one‐member control and ensemble mean
analyses in the EnVar‐L and EnVar‐G experiments against assimilated VIIRS AOD retrievals. As expected,
compared to the NODA 6‐hr forecast, both the control and ensemble mean analyses in the two AOD assimilation
experiments showed significantly improved agreement with VIIRS AOD retrievals in terms of AOD value, biases
and root‐mean‐square errors (RMSEs), suggesting the substantial benefits of assimilating VIIRS AOD retrievals
within GEFS‐Aerosols. In these two AOD assimilation experiments, the one‐member control analyses obtained
from EnVar showed slightly lower biases and RMSEs than their corresponding ensemble mean analyses produced
by LETKF and GETKF, respectively. In addition, the biases and RMSEs in the one‐member control analysis in
the EnVar‐L experiment were marginally lower than those in the EnVar‐G experiment, while their ensemble
mean analyses were comparable. The differences of the resulting control and ensemble mean analyses in these
two AOD assimilation experiments could be attributed to their specific localization strategies as discussed in
Huang et al. (2023). Further tuning of localization length scales and inflation factors in EnVar‐L and EnVar‐G
will be performed to optimize their assimilation performance in the future.

Figure 14. (a) Time‐series of 550 nm aerosol optical depth (AOD) means from Visible Infrared Imaging Radiometer Suite (VIIRS) (gray), no data assimilation 6‐hr
forecast (black), the one‐member control and ensemble mean analyses in the EnVar‐L (blue and green, respectively) and EnVar‐G (red and orange, respectively)
experiments in a 6‐hourly interval in June 2016, and their corresponding (b) biases and (c) root‐square‐mean errors (RMSEs) against VIIRS AOD retrievals. (d–f) Are
the temporally means of the corresponding (a)–(c) over the last 3 weeks in June 2016.
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8. Summary, Conclusions, and Future Work
This paper describes the implementation of the local volume solvers in the JEDI framework. We found that EnKF
implementations that target Earth system assimilation need to support a wide variety of ensemble localization
strategies, as appropriate for the different components of the Earth system. For example, model space localization
(GETKF) was requested by the atmospheric and aerosol communities, observation‐space localization (LETKF)
with localization distance condition on the Rossby radius of deformation was requested by the oceanic com-
munity, and terrain‐dependent localization was requested by the land‐modeling community. Our preliminary
demonstration of a strongly coupled DA example (Figure 8) demonstrates that further work is needed to develop,
implement, and test methods for cross‐fluid localization operators.

Another challenge specific to a generic DA framework such as JEDI, is efficiently distributing computations and
memory across PEs. To our knowledge, EnKF‐specific implementations like DART have engineered their PE
distributions to be optimized specifically for the EnKF computations, by distributing both the model grid points
and observations randomly across the PEs (method 4.a of J. L. Anderson and Collins (2007)). This ensures good
load balancing at the expense of inter‐processor communication. By contrast, the JEDI framework supports a
number of applications with different load balancing requirements, such as forward model simulations, obser-
vation operators, variational solvers, and EnKF solvers. At the time of writing, our implementation inherited grid
point distributions from the model interfaces (e.g., cubed‐sphere for the FV3 model and the tri‐polar grid for the
ocean) and implemented a new (“Halo”) observation distribution that stores only observations required for the
local volume computation on each PE (Figure 2). This is similar to method 4.b of J. L. Anderson and
Collins (2007). We are currently exploring ways to further improve load and memory balancing for local volume
computations.

During the development of the framework for local volume solvers, we benefited greatly from the large number of
contributors to the JEDI framework, who tested the generic local volume solvers that we developed in this paper
using atmospheric, oceanic, land, and aerosol test cases. Our brief summary of the cycling results showed that
different variants of the local volume solver (GETKF, LETKF, LETKF‐OI) all compared well to a variety of
reference solutions including a free running model (land and aerosols) and variational solvers (ocean and
aerosols).

Testing of the developed solvers in the cycling system also revealed that further work is needed to improve
scalability, computational performance, and memory management of the local volume solver implementation in
JEDI. We chose not to highlight specific computational performance results in this paper as the JEDI code
optimization is rapidly progressing and any results with regard to the computational performance are likely to
quickly become obsolete. Specifically, our group is actively working on the issues related to computational
scalability, efficient memory management, and disk input‐output optimization that are essential for operational
implementation of the JEDI GETKF solver that can use high‐resolution global ensembles and a complete set of
atmospheric observations.

Finally, we believe that this local volume framework lays the groundwork for future algorithmic developments.
Specifically, JEDI can benefit from implementation of the serial solver (J. L. Anderson, 2001), which replaces the
matrix inverse in Equations 10 and 16 with a sequence of scalar inverse problems. The serial solver is a pre-
requisite to the implementation of non‐linear filters, such as the local particle filters (Poterjoy, 2016), or the
Gamma, Inverse‐Gamma, and Gaussian filter (Bishop, 2016). The most natural implementation of serial filters in
JEDI would involve replacing the Ensemble Transform computation for each of the local volumes with the serial
EnKF update (similar to method 4.b in J. L. Anderson and Collins (2007)). Another intriguing direction would be
to implement iterative Kalman Filters (Bocquet & Sakov, 2014), which can exploit the existing library of line-
arized observation operators in JEDI. Implementation of the multi‐scale localization operators similar to (Wang
et al., 2021) would be yet another beneficial development.

Data Availability Statement
The software code for the generic JEDI solvers is available in the OOPS code repository (JCSDA, 2023d).
Software implementations for land, atmosphere, and composition are available in the FV3‐JEDI code repository
(JCSDA, 2023a). Software implementation for the ocean and ice components is available in the SOCA code
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repository (JCSDA, 2023e). The Unified Forecast System model is available in the UFS code repository
(UFS, 2023). Training and documentation for the JEDI software are available in JCSDA (2023b, 2023c),
respectively.
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